Assessing Geomechanical Risks at GCS Sites Using the State of Stress Assessment Tool (SOSAT)

Jeff Burghardt (PNNL)
Delphine Appriou (PNNL)
2021 GWPC Annual Forum
September 29, 2021

Outline

• What is geomechanical risk?

What is SOSAT?

- Example: using SOSAT to estimate risk based on:
 - Frictional faulting (stress polygon)
 - Mini-frac stress measurement (wireline-based)
 - Absence of breakout (image log)

What is Geomechanical Risk?

Leakage caused by unintentional hydraulic fracturing

- Occurs when the pore fluid pressure exceeds the minimum principal stress
- Can occur in reservoir or the caprock

Induced seismicity

- Caused by change in stress on fault induced by elevated pore pressure
- Can be caused directly by elevated pore pressure on fault
- Can be caused indirectly by changes in stress even if local pore pressure is not elevated

What is SOSAt?

State of Stress Assessment Tool (SOSAT)

- Allows user to input a wide variety of observations relevant to state of stress
- Computes probability distribution of the stress tensor at a point in the subsurface
- Can be applied to reservoir or surrounding formations
- GUI supports some features but there are some only supported through a Python interface

SOSAT is Now on GitHub (github.com/pnnl/SOSAT)

Does stress uncertainty matter?

- How will the information be used?
 - Wellbore stability
 - Fracture initiation
 - Fracture height growth
 - Induced seismicity
- What is the consequence of an error?
 - Inconvenience
 - Delay
 - Lost revenue
 - Elevated costs
 - Environmental damage
 - Loss of life

Applying Statistics to Tensors

Statistically, stress (and other tensors) should be thought of as a joint probability distribution of magnitudes and directions

There is often a correlation between principal stress components, so they cannot be treated as independent

Prior Stress State Assumption

 $P(\sigma_H, \sigma_h)$

40

60

Minimum Horizontal Stress (MPa)

80

100

Begin with posterior assumption that all stress states where $\sigma_H > \sigma_h$ and both are compressive have equal probability

 1.25×10^{-5}

Frictional Faulting Constraint

Assert that stress cannot be larger than rock strength, which is assumed to be governed by frictional strength of faults and fractures

$$P(D|\sigma_H, \sigma_h) = 1 - \frac{1}{2}\operatorname{erfc}\left[-\frac{\ln\mu_c - \mu_o}{\sigma_\mu\sqrt{2}}\right]$$

 $\mu_c \qquad \begin{array}{l} \text{friction coefficient that would cause failure at a given} \\ \text{stress state} \end{array}$

 μ_o mean of the lognormal distribution for friction

Regional Stress Observations

Most stress indicators in the area suggest a strike-slip state of stress, with some possibility of thrust faulting

World Stress Map Database

Minimum Principal Stress Measurement

Constraint by Absence of Breakout

Core Tests

Mud Logs/Drilling Reports/ MWD Data

Add constraint based on the absence of breakouts and uncertainties in formation and mud properties

Formation of breakout depends on σ_h , σ_H , and:

Minimum rock strength

Minimum mud pressure

Maximum mud temperature

Constraint by Absence of Breakout

With breakout constraint

Constraint by Absence of Breakout

Risk of fault activation without breakout analysis

Risk of fault activation with breakout analysis

Future Plans/Learn More

- 2D Mapping along a formation
 - Develop support for earthquake focal mechanisms
 - Automate pulling data from World Stress Map Database

Develop web-based GUI

Download GUI and User's Manual:

https://edx.netl.doe.gov/nrap/state-of-stress-analysis-tool-sosat/

Tool User Forum:

https://edx.netl.doe.gov/workspace/forum/nrap-tools

Download/Install from GitHub or PyPi:

https://github.com/pnnl/SOSAT

